

TurboPy: a framework for computational physics

Contents

	Getting Started
	turboPy Conda environment

	turboPy development environment

	Example turboPy app

	Sharing Resources
	Making resources available to other modules

	Looking for shared resources

	TurboPy API
	Core framework classes

	Diagnostic classes

	Compute tools

For more details about the turboPy framework, see the published paper [https://doi.org/10.1016/j.cpc.2020.107607] in Computer Physics Communications.

Follow along with development at https://github.com/NRL-Plasma-Physics-Division/turbopy

An example of an “app” created with the turboPy framework is available here: https://github.com/NRL-Plasma-Physics-Division/particle-in-field

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

turboPy Conda environment

	Create a conda environment for turboPy: conda env create -f environment.yml

	Activate: conda activate turbopy

	
	Install turboPy into the environment (from the main folder where setup.py is):
	
	Install turboPy in editable mode (i.e. setuptools “develop mode”) if you are modifying turboPy itself: pip install -e .

	If you just plan to develop a code using the existing turboPy framework: pip install .

	Run tests: pytest

turboPy development environment

If using pylint (which you should!) add variable-rgx=[a-z0-9_]{1,30}$ to your .pylintrc file to allow single character variable names.

Merge requests are encouraged!

Example turboPy app

Once you have the turboPy conda environment set up, you can go ahead and write a “turboPy app”. The simplest way to get started with writing an app might be to clone an existing example app.

This example app [https://github.com/NRL-Plasma-Physics-Division/particle-in-field] computes the motion of a charged particle in an electric field.

Sharing Resources

It is often necessary to share resources between custom turbopy.core.PhyiscsModules or turbopy.core.Diagnostics. A new API has been developed to assist with this. To use this new API, you simply need to define a couple of dictionaries (_resources_to_share and _needed_resources) in your class. Then, when the prepare_simulation method of your simulation is called, the shared variables get set up automatically.

Making resources available to other modules

In order to tell other turbopy.core.PhyiscsModules about resources that you want to share, just add them to the member variable _resources_to_share in the __init__ method. For example, the following function will share the variables self.position and self.momentum:

def __init__(self, owner: Simulation, input_data: dict):
 super().__init__(owner, input_data)
 self.position = np.zeros((1, 3))
 self.momentum = np.zeros((1, 3))

 self._resources_to_share = {"position": self.position,
 "momentum": self.momentum}

Note that the variables that you want to share need to be defined before they can be added to the _resources_to_share dictionary. Also, make sure that they are mutable variables, otherwise other modules won’t see any changes that you make to them during the simulation.

Looking for shared resources

If your module needs access to a variable that is being shared from a different module, you use the member variable _needed_resources. In this example, the data shared by the example above will be saved.

def __init__(self, owner: Simulation, input_data: dict):
 super().__init__(owner, input_data)
 self._needed_resources = {"position": "x",
 "momentum": "p"}

This will create the variables self.x and self.p, which will point to the position and momentum data shared by the second module.

TurboPy API

The core turboPy API is composed of one main class (the turbopy.core.Simulation class) and three abstract base classes, turbopy.core.PhyiscsModule, turbopy.core.Diagnostic, and turbopy.core.ComputeTool.

Core framework classes

Core base classes of the turboPy framework

Notes

The published paper for Turbopy: A lightweight python framework for computational physics can be found in the link below [1].

References

[1]
1 A.S. Richardson, D.F. Gordon, S.B. Swanekamp, I.M. Rittersdorf, P.E. Adamson, O.S. Grannis, G.T. Morgan, A. Ostenfeld, K.L. Phlips, C.G. Sun, G. Tang, and D.J. Watkins, Comput. Phys. Commun. 258, 107607 (2021). https://doi.org/10.1016/j.cpc.2020.107607

	
class turbopy.core.ComputeTool(owner: Simulation, input_data: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Bases: DynamicFactory

This is the base class for compute tools

These are the compute-heavy functions, which have implementations
of numerical methods which can be shared between physics modules.

	Parameters:

	
	owner (Simulation) – Simulation class that ComputeTool belongs to.

	input_data (dict) – Dictionary that contains user defined parameters about this
object such as its name.

	
_registry

	Registered derived ComputeTool classes.

	Type:

	dict

	
_factory_type_name

	Type of ComputeTool child class

	Type:

	str

	
_owner

	Simulation class that ComputeTool belongs to.

	Type:

	Simulation

	
_input_data

	Dictionary that contains user defined parameters about this
object such as its name.

	Type:

	dict

	
name

	Type of ComputeTool.

	Type:

	str

	
custom_name

	Name given to individual instance of tool, optional.
Used when multiple tools of the same type exist in one
Simulation.

	Type:

	str

	
initialize()

	Perform any initialization operations needed for this tool

	
class turbopy.core.Diagnostic(owner: Simulation, input_data: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Bases: DynamicFactory

Base diagnostic class.

	Parameters:

	
	owner (Simulation) – The Simulation object that owns this object

	input_data (dict) – Dictionary that contains user defined parameters about this
object such as its name.

	
_factory_type_name

	Type of DynamicFactory child class

	Type:

	str

	
_registry

	Registered derived Diagnostic classes

	Type:

	dict

	
_owner

	The Simulation object that contains this object

	Type:

	Simulation

	
_input_data

	Dictionary that contains user defined parameters about this
object such as its name.

	Type:

	dict

	
_needed_resources

	Dictionary that lists shared resources that this module
needs. Format is {shared_key: variable_name}, where
shared_key is a string with the name of needed resource,
and variable_name is a string to use when saving this
variable. For example: {“Fields:E”: “E”} will make self.E.

	Type:

	dict

	
diagnose()

	Perform diagnostic step

This gets called on every step of the main simulation loop.

	Raises:

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – Method or function hasn’t been implemented yet. This is an
 abstract base class. Derived classes must implement this
 method in order to be a concrete child class of
 Diagnostic.

	
finalize()

	Perform any finalization operations

This gets called once after the main simulation loop is
complete.

	
initialize()

	Perform any initialization operations

This gets called once before the main simulation loop. Base class
definition creates output directory if it does not already exist. If
subclass overrides this function, call super().initialize()

	
inspect_resource(resource: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Deprecated

This method is only here for backwards compatability. New
code should use the ``_needed_resources`` dictionary.

Save references to data from other PhysicsModules
If your subclass needs the data described by the key, now’s
their chance to save a reference to the data
:param resource: A dictionary containing references to data shared by other

PhysicsModules.

	
class turbopy.core.DynamicFactory

	Bases: ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Abstract class which provides dynamic factory functionality

This base class provides a dynamic factory pattern functionality to
classes that derive from this.

	
classmethod is_valid_name(name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Check if the name is in the registry

	
classmethod lookup(name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Look up a name in the registry, and return the associated
derived class

	
classmethod register(name_to_register: str [https://docs.python.org/3/library/stdtypes.html#str], class_to_register, override=False)

	Add a derived class to the registry

	
class turbopy.core.Grid(input_data: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Grid class

	Parameters:

	input_data (dict) – Dictionary containing parameters needed to defined the grid.
Currently only 1D grids are defined in turboPy.

The expected parameters are:

	
	"N" | {"dr" | "dx"} :
	The number of grid points (int) | the grid spacing
(float)

	
	"min" | "x_min" | "r_min" :
	The coordinate value of the minimum grid point (float)

	
	"max" | "x_max" | "r_max" :
	The coordinate value of the maximum grid point (float)

	
_input_data

	Dictionary containing parameters needed to defined the grid.
Currently only 1D grids are defined in turboPy.

	Type:

	dict

	
r_min

	Min of the Grid range.

	Type:

	float, None

	
r_max

	Max of the Grid range.

	Type:

	float, None

	
num_points

	Number of points on Grid.

	Type:

	int, None

	
dr

	Grid spacing.

	Type:

	float, None

	
r, cell_edges

	Array of evenly spaced Grid values.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
cell_centers

	Value of the coordinate in the middle of each Grid cell.

	Type:

	float

	
cell_widths

	Width of each cell in the Grid.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
r_inv

	Inverse of coordinate values at each Grid point,
1/Grid.r.

	Type:

	float

	
create_interpolator(r0)

	Return a function which linearly interpolates any field on
this grid, to the point r0.

	Parameters:

	r0 (float) – The requested point on the grid.

	Returns:

	A function which takes a grid quantity y and returns the
interpolated value of y at the point r0.

	Return type:

	function

	
generate_field(num_components=1, placement_of_points='edge-centered')

	Returns squeezed numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] of zeros with
dimensions Grid.num_points and num_components.

	Parameters:

	
	num_components (int [https://docs.python.org/3/library/functions.html#int], defaults to 1) – Number of vector components at each point.

	placement_of_points (str [https://docs.python.org/3/library/stdtypes.html#str], defaults to "edge-centered") – Designate position of points on grid

	Returns:

	Squeezed array of zeros.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
generate_linear()

	Returns numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] with Grid.num_points
evenly spaced in the interval between 0 and 1.

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]
	Evenly spaced array.

	
parse_grid_data()

	Initializes the grid spacing, range, and number of points on the
grid from Grid._input_data.

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the range and step size causes a non-integer number of
 grid points.

	
set_value_from_keys(var_name, options)

	Initializes a specified attribute to a value provided in
Grid._input_data.

	Parameters:

	
	var_name (str) – Attribute name to be initialized.

	options (set) – Set of keys in Grid._input_data to search
for values.

	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If none of the keys in options are present in
 Grid._input_data.

	
class turbopy.core.PhysicsModule(owner: Simulation, input_data: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Bases: DynamicFactory

This is the base class for all physics modules

By default, a subclass will share any public attributes as turboPy
resources. The default resource name for these automatically shared
attributes is the string form by combining the class name and the
attribute name: <class_name>_<attribute_name>.

If there are attributes that should not be automatically
shared, then use the python “private” naming convention, and give
the attribute a name which starts with an underscore.

	Parameters:

	
	owner (Simulation) – Simulation class that PhysicsModule belongs to.

	input_data (dict) – Dictionary that contains user defined parameters about this
object such as its name.

	
_owner

	Simulation class that PhysicsModule belongs to.

	Type:

	Simulation

	
_module_type

	Module type.

	Type:

	str, None

	
_input_data

	Dictionary that contains user defined parameters about this
object such as its name.

	Type:

	dict

	
_registry

	Registered derived ComputeTool classes.

	Type:

	dict

	
_factory_type_name

	Type of PhysicsModule child class.

	Type:

	str

	
_needed_resources

	Dictionary that lists shared resources that this module
needs. Format is {shared_key: variable_name}, where
shared_key is a string with the name of needed resource,
and variable_name is a string to use when saving this
variable. For example: {“Fields:E”: “E”} will make self.E.

	Type:

	dict

	
_resources_to_share

	Dictionary that lists shared resources that this module
is sharing to others. Format is {shared_key: variable}, where
shared_key is a string with the name of resource to share,
and variable is the data to be shared.

	Type:

	dict

Notes

This class is based on Module class in TurboWAVE.
Because python mutable/immutable is different than C++ pointers, the
implementation here is different. Here, a “resource” is a
dictionary, and can have more than one thing being shared. Note that
the value stored in the dictionary needs to be mutable. Make sure
not to reinitialize it, because other physics modules will be
holding a reference to it.

	
exchange_resources()

	Main method for sharing resources with other
PhysicsModule objects.

This is the function where you call publish_resource(),
to tell other physics modules about data you want to share.

By default, any “public” attributes (those with names that do
not start with an underscore) will be shared with the key
<class_name>_<attribute_name>.

	
initialize()

	Perform initialization operations for this
PhysicsModule

This is called before the main simulation loop

	
inspect_resource(resource: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Deprecated

This method is only here for backwards compatability. New
code should use the ``_needed_resources`` dictionary.

Method for accepting resources shared by other PhysicsModules
If your subclass needs the data described by the key, now’s
their chance to save a pointer to the data.
:param resource: resource dictionary to be shared
:type resource: dict

	
publish_resource(resource: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Deprecated

This method is only here for backwards compatability. New
code should use the ``_resources_to_share`` dictionary.

Method which implements the details of sharing resources
:param resource: resource dictionary to be shared
:type resource: dict

	
reset()

	Perform any needed reset operations

This is called at every time step in the main loop, before any
of the calls to update.

	
update()

	Do the main work of the PhysicsModule

This is called at every time step in the main loop.

	
class turbopy.core.Simulation(input_data: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Main turboPy simulation class

This Class “owns” all the physics modules, compute tools, and
diagnostics. It also coordinates them. The main simulation loop is
driven by an instance of this class.

	Parameters:

	input_data (dict) – This dictionary contains all parameters needed to set up a
turboPy simulation. Each key describes a section, and the value
is another dictionary with the needed parameters for that
section.

Expected keys are:

	"Grid", optional
	Dictionary containing parameters needed to define the grid.
Currently only 1D grids are defined in turboPy.

The expected parameters are:

	
	"N" | {"dr" | "dx"} :
	The number of grid points (int) | the grid spacing
(float)

	
	"min" | "x_min" | "r_min" :
	The coordinate value of the minimum grid point (float)

	
	"max" | "x_max" | "r_max" :
	The coordinate value of the maximum grid point (float)

	"Clock"
	Dictionary of parameters needed to define the simulation
clock.

The expected parameters are:

	
	"start_time" :
	The time for the start of the simulation (float)

	
	"end_time" :
	The time for the end of the simulation (float)

	
	"num_steps" | "dt" :
	The number of time steps (int) | the size of the time
step (float)

	
	"print_time" :
	bool, optional, default is False

	"PhysicsModules"dict [str, dict]
	Dictionary of PhysicsModule items needed for the
simulation.

Each key in the dictionary should map to a
PhysicsModule subclass key in the
PhysicsModule registry.

The value is a dictionary of parameters which is passed to
the constructor for the PhysicsModule.

	"Diagnostics"dict [str, dict], optional
	Dictionary of Diagnostic items needed for the
simulation.

Each key in the dictionary should map to a
Diagnostic subclass key in the Diagnostic
registry.

The value is a dictionary of parameters which is passed to
the constructor for the Diagnostic.

If the key is not found in the registry, then the key/value
pair is interpreted as a default parameter value, and is
added to dictionary of parameters for all of the
Diagnostic constructors.

If the directory and filename keys are not specified,
default values are created in the
read_diagnostics_from_input() method.
The default name for the directory is “default_output” and
the default filename is the name of the Diagnostic subclass
followed by a number.

	"Tools"dict [str, dict], optional
	Dictionary of ComputeTool items needed for the
simulation.

Each key in the dictionary should map to a
ComputeTool subclass key in the
ComputeTool registry.

The value is a dictionary of parameters which is passed to
the constructor for the ComputeTool.

	
physics_modules

	A list of PhysicsModule objects for this simulation.

	Type:

	list of PhysicsModule subclass objects

	
diagnostics

	A list of Diagnostic objects for this simulation.

	Type:

	list of Diagnostic subclass objects

	
compute_tools

	A list of ComputeTool objects for this simulation.

	Type:

	list of ComputeTool subclass objects

	
finalize_simulation()

	Close out the simulation

Runs the Diagnostic.finalize() method for each
diagnostic.

	
find_tool_by_name(tool_name: str [https://docs.python.org/3/library/stdtypes.html#str], custom_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Returns the ComputeTool associated with the
given name

	
fundamental_cycle()

	Perform one step of the main time loop

Executes each diagnostic and physics module, and advances
the clock.

	
prepare_simulation()

	Prepares the simulation by reading the input and initializing
physics modules and diagnostics.

	
read_clock_from_input()

	Construct the clock based on input parameters

	
read_diagnostics_from_input()

	Construct Diagnostic instances based on input

	
read_grid_from_input()

	Construct the grid based on input parameters

	
read_modules_from_input()

	Construct PhysicsModule instances based on input

	
read_tools_from_input()

	Construct ComputeTools based on input

	
run()

	Runs the simulation

This initializes the simulation, runs the main loop, and then
finalizes the simulation.

	
sort_modules()

	Sort Simulation.physics_modules by some logic

Unused stub for future implementation

	
class turbopy.core.SimulationClock(owner: Simulation, input_data: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Clock class for turboPy

	Parameters:

	
	owner (Simulation) – Simulation class that SimulationClock belongs to.

	input_data (dict) – Dictionary of parameters needed to define the simulation
clock.

The expected parameters are:

	
	"start_time" :
	The time for the start of the simulation (float)

	
	"end_time" :
	The time for the end of the simulation (float)

	
	"num_steps" | "dt" :
	The number of time steps (int) | the size of the time
step (float)

	
	"print_time" :
	bool, optional, default is False

	
_owner

	Simulation class that SimulationClock belongs to.

	Type:

	Simulation

	
_input_data

	Dictionary of parameters needed to define the simulation
clock.

	Type:

	dict

	
start_time

	Clock start time.

	Type:

	float

	
time

	Current time on clock.

	Type:

	float

	
end_time

	Clock end time.

	Type:

	float

	
this_step

	Current time step since start.

	Type:

	int

	
print_time

	If True will print current time after each increment.

	Type:

	bool

	
num_steps

	Number of steps clock will take in the interval.

	Type:

	int

	
dt

	Time passed at each increment.

	Type:

	float

	
advance()

	Increment the time

	
is_running()

	Check if time is less than end time

	
turn_back(num_steps=1)

	Set the time back num_steps time steps

Diagnostic classes

Diagnostics module for the turboPy computational physics simulation framework.

Diagnostics can access PhysicsModule data.
They are called every time step, or every N steps.
They can write to file, cache for later, update plots, etc, and they
can halt the simulation if conditions require.

	
class turbopy.diagnostics.CSVOutputUtility(filename, diagnostic_size, **kwargs)

	Bases: OutputUtility

Comma separated value (CSV) diagnostic output helper class

Provides routines for writing data to a file in CSV format. This
class can be used by Diagnostics subclassses to handle output to
csv format.

	Parameters:

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – File name for CSV data file.

	diagnostic_size ((int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])) – Size of data set to be written to CSV file. First value is the
number of time points. Second value is number of spatial points.

	
filename

	File name for CSV data file.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
buffer

	Buffer for storing data before it is written to file.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
buffer_index

	Position in buffer.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
append(data)

	Append data to the buffer.

Deprecated since version `append`: has been removed from the public API. Use diagnose
instead.

	
diagnose(data)

	Adds ‘data’ into csv output buffer.

	Parameters:

	data (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – 1D numpy array of values to be added to the buffer.

	
finalize()

	Write the CSV data to file.

	
write_data()

	Write buffer to file

	
class turbopy.diagnostics.ClockDiagnostic(owner: Simulation, input_data: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Bases: Diagnostic

Diagnostic subclass used to store and save time data into a CSV
file using the CSVOutputUtility class.

	Parameters:

	
	owner (Simulation) – The Simulation object that contains this object

	input_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary containing information about this diagnostic such as
its name

	
owner

	The Simulation object that contains this object

	Type:

	Simulation

	
input_data

	Dictionary containing information about this diagnostic such as
its name

	Type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
filename

	File name for CSV time file

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
csv

	Array to store values to be written into a CSV file

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
interval

	The time interval to wait in between writing to output file. If interval is None,
then the outputs are written only at the end of the simulation.

	Type:

	float [https://docs.python.org/3/library/functions.html#float], None

	
handler

	The IntervalHandler object that handles writing to output files while
the simulation is running. Is None if the interval parameter is not specified

	Type:

	IntervalHandler

	
diagnose()

	Append time into the csv buffer.

	
finalize()

	Write time into self.csv and saves as a CSV file.

	
initialize()

	Initialize self.csv as an instance of the
CSVOuputUtility class.

	
class turbopy.diagnostics.FieldDiagnostic(owner: Simulation, input_data: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Bases: Diagnostic

	Parameters:

	
	owner (Simulation) – Simulation object containing current object.

	input_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary that contains information regarding location, field,
and output type.

	
component

	
	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
field_name

	Field.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
output

	Output type.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
field

	Field as dictated by resource.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str], None

	
dump_interval

	Time interval at which the diagnostic is run.

	Type:

	int [https://docs.python.org/3/library/functions.html#int], None

	
write_interval

	Time interval at which the diagnostic buffer is written to file. If
this is None, then the buffer is not written out until the end of
the simulation.

	Type:

	int [https://docs.python.org/3/library/functions.html#int], None

	
diagnose

	Uses the dump and write handlers to perform the diagnostic actions.

	Type:

	method

	
diagnostic_size

	Size of data set to be written to CSV file. First value is the
number of time points. Second value is number of spatial points.

	Type:

	(int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]), None

	
diagnose()

	Perform diagnostic step

This gets called on every step of the main simulation loop.

	Raises:

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – Method or function hasn’t been implemented yet. This is an
 abstract base class. Derived classes must implement this
 method in order to be a concrete child class of
 Diagnostic.

	
do_diagnostic()

	Run output_function depending on field.shape.

	
finalize()

	Write the CSV data to file if CSV is the proper output type.

	
initialize()

	Initialize diagnostic_size and output function if provided as
csv, and self.csv as an instance of the
CSVOutputUtility class.

	
class turbopy.diagnostics.GridDiagnostic(owner: Simulation, input_data: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Bases: Diagnostic

Diagnostic subclass used to store and save grid data
into a CSV file

	Parameters:

	
	owner (Simulation) – The ‘Simulation’ object that contains this object

	input_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary containing information about this diagnostic such as
its name

	
owner

	The ‘Simulation’ object that contains this object

	Type:

	Simulation

	
input_data

	Dictionary containing information about this diagnostic such as
its name

	Type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
filename

	File name for CSV grid file

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
diagnose()

	Grid diagnotic only runs at startup

	
initialize()

	Save grid data into CSV file

	
class turbopy.diagnostics.HistoryDiagnostic(owner: Simulation, input_data: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Bases: Diagnostic

Outputs histories/traces as functions of time

This diagnostic assists in outputting 1D history traces. Multiple time-
dependant quantities can be selected, and are output to a NetCDF file
using the xarray python package.

Examples

When using a python dictionary to define the turboPy simulation, the
history diagnostics can be added as in this example. Each item in the
“traces” list has several key: value pairs. The “name” key corresponds
to a turboPy resource that is shared by another module. The “coords”
key is used in cases where the shared resource is more than just a
scalar quantitiy. In this example, the position and momentum are
length-3 vectors, with the three entries corresponding to the three
vector components. In the case where a resources is a quantity on the
grid, then something like 'coords': ['x'], 'units': 'm' might be
appropriate.

Note that the ‘coords’ list has two items, because the shape of the
shared numpy array is (1, 3) in this example. The first item is
basically just a placeholder, and is called “dim0”.

>>> simulation_parameters = {"Diagnostics": {
 "histories": {
 "filename": "output.nc",
 "traces": [
 {'name': 'EMField:E'},
 {'name': 'ChargedParticle:momentum',
 'units': 'kg m/s',
 'coords': ["dim0", "vector component"],
 'long_name': 'Particle Momentum'
 },
 {'name': 'ChargedParticle:position',
 'units': 'm',
 'coords': ["dim0", "vector component"],
 'long_name': 'Particle Position'
 },
]
 }
 }
 }

This is another example of a similar history setup, but in the format
expected for a toml input file.

[Diagnostics.histories]
filename = "history.nc"

[[Diagnostics.histories.traces]]
name = 'ChargedParticle:momentum'
units = 'kg m/s'
coords = ["dim0", "vector component"]
long_name = 'Particle Momentum'

[[Diagnostics.histories.traces]]
name = 'ChargedParticle:position'
units = 'm'
coords = ["dim0", "vector component"]
long_name = 'Particle Position'

[[Diagnostics.histories.traces]]
name = 'EMField:E'

References

[1] C. Birdsall and A. Langdon. Plasma Physics via Computer Simulation.
Institute of Physics Series in Plasma Physics and Fluid Dynamics.
Taylor & Francis, 2004. Page 382.

	
diagnose()

	Perform diagnostic step

This gets called on every step of the main simulation loop.

	Raises:

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – Method or function hasn’t been implemented yet. This is an
 abstract base class. Derived classes must implement this
 method in order to be a concrete child class of
 Diagnostic.

	
finalize()

	Perform any finalization operations

This gets called once after the main simulation loop is
complete.

	
initialize()

	Perform any initialization operations

This gets called once before the main simulation loop. Base class
definition creates output directory if it does not already exist. If
subclass overrides this function, call super().initialize()

	
class turbopy.diagnostics.IntervalHandler(interval, action)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Calls a function (action) if a given interval has passed

	Parameters:

	
	interval (float [https://docs.python.org/3/library/functions.html#float], None) – The time interval to wait in between actions. If interval is None,
then the action will be called every time.

	action (callable) – The function to call when the interval has passed

	
perform_action(time)

	Perform the action if an interval has passed

	
class turbopy.diagnostics.NPYOutputUtility(filename, diagnostic_size, **kwargs)

	Bases: OutputUtility

NumPy formatted binary file (.npy) diagnostic output helper class

Provides routines for writing data to a file in NumPy format. This
class can be used by Diagnostics subclassses to handle output to
.npy format.

	Parameters:

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – File name for .npy data file.

	diagnostic_size ((int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])) – Size of data set to be written to .npy file. First value is the
number of time points. Second value is number of spatial points.

	
filename

	File name for .npy data file.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
buffer

	Buffer for storing data before it is written to file.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
buffer_index

	Position in buffer.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
diagnose(data)

	Adds ‘data’ into npy output buffer.

	Parameters:

	data (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – 1D numpy array of values to be added to the buffer.

	
finalize()

	Write the npy data to file.

	
write_data()

	Write buffer to file

	
class turbopy.diagnostics.OutputUtility(input_data)

	Bases: ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Abstract base class for output utility

An instance of an OutputUtility can (optionally) be used by diagnostic
classes to assist with the implementation details needed for outputing
the diagnostic information.

	
abstract diagnose(data)

	Perform the diagnostic

	
abstract finalize()

	Perform any finalization steps when the simulation is complete

	
abstract write_data()

	Optional function for writting buffer to file etc.

	
class turbopy.diagnostics.PointDiagnostic(owner: Simulation, input_data: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Bases: Diagnostic

	Parameters:

	
	owner (Simulation) – Simulation object containing current object.

	input_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary that contains information regarding location, field,
and output type.

	
location

	Location.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
field_name

	Field name.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
output

	Output type.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_value

	Function to get value given the field.

	Type:

	function, None

	
field

	Field as dictated by resource.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str], None

	
output_function

	Function for assigned output method: standard output or csv.

	Type:

	function, None

	
csv

	numpy.ndarray being written as a csv file.

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], None

	
diagnose()

	Run output function given the value of the field.

	
finalize()

	Write the CSV data to file if CSV is the proper output type.

	
initialize()

	Initialize output function if provided as csv, and self.csv
as an instance of the CSVOuputUtility class.

	
class turbopy.diagnostics.PrintOutputUtility(input_data)

	Bases: OutputUtility

OutputUtility which writes to the screen

	
diagnose(data)

	Prints out data to standard output.

	Parameters:

	data (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – 1D numpy array of values.

Compute tools

Several subclasses of the turbopy.core.ComputeTool class for
common scenarios

Included stock subclasses:

	Solver for the 1D radial Poisson’s equation

	Helper functions for constructing sparse finite difference matrices

	Charged particle pusher using the Boris method

	Interpolate a function y(x) given y on a grid in x

	
class turbopy.computetools.BorisPush(owner: Simulation, input_data: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Bases: ComputeTool

Calculate charged particle motion in electric and magnetic fields

This is an implementation of the Boris push algorithm.

	Parameters:

	
	owner (Simulation) – The turbopy.core.Simulation object that contains this
object

	input_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – There are no custom configuration options for this tool

	
c2

	The speed of light squared

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
push(position, momentum, charge, mass, E, B)

	Update the position and momentum of a charged particle in an
electromagnetic field

	Parameters:

	
	position (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The initial position of the particle as a vector

	momentum (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The initial momentum of the particle as a vector

	charge (float [https://docs.python.org/3/library/functions.html#float]) – The electric charge of the particle

	mass (float [https://docs.python.org/3/library/functions.html#float]) – The mass of the particle

	E (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The value of the electric field at the particle

	B (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The value of the magnetic field at the particle

	
class turbopy.computetools.FiniteDifference(owner: Simulation, input_data: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Bases: ComputeTool

Helper functions for constructing finite difference matrices

This class contains functions for constructing finite difference
approximations to various differential operators. The
scipy.sparse [https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse] package from scipy [https://docs.scipy.org/doc/scipy/index.html#module-scipy] is used since most of
these are tridiagonal sparse matrices.

	Parameters:

	
	owner (Simulation) – The turbopy.core.Simulation object that contains this
object

	input_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of configuration options.
The expected parameters are:

	
	"method" | {"centered" | "upwind_left"} :
	Select between centered difference, and left upwind
difference for the setup_ddx member function.

	
BC_left_avg()

	Sparse matrix to set average solution at left boundary

	Returns:

	Matrix which implements a boundary condition for the left
boundary.

	Return type:

	scipy.sparse.dia_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.html#scipy.sparse.dia_matrix]

	
BC_left_extrap()

	Sparse matrix to extrapolate solution at left boundary

	Returns:

	Matrix which implements a boundary condition for the left
boundary such that the solution at the first two internal
grid points is extrapolated to the boundary point.

	Return type:

	scipy.sparse.dia_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.html#scipy.sparse.dia_matrix]

	
BC_left_flat()

	Sparse matrix to set Neumann condition at left boundary

	Returns:

	Matrix which implements a boundary condition for the left
boundary such that the derivative of the solution is zero
at the boundary.

	Return type:

	scipy.sparse.dia_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.html#scipy.sparse.dia_matrix]

	
BC_left_quad()

	Sparse matrix for quadratic extrapolation at left boundary

	Returns:

	Matrix which implements a boundary condition for the left
boundary such that the solution at the first two internal
grid points is extrapolated to the boundary point.

	Return type:

	scipy.sparse.dia_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.html#scipy.sparse.dia_matrix]

	
BC_right_extrap()

	Sparse matrix to extrapolate solution at right boundary

	Returns:

	Matrix which implements a boundary condition for the right
boundary such that the solution at the first two internal
grid points is extrapolated to the boundary point.

	Return type:

	scipy.sparse.dia_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.html#scipy.sparse.dia_matrix]

	
centered_difference(y)

	Centered finite difference estimate for dy/dx

	Parameters:

	y (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Vector of values on the grid

	Returns:

	Estimate of the derivative dy/dx constructed using the
centered finite difference method

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
ddr()

	Finite difference matrix for (d/dr) f

	Returns:

	Matrix which implements a finite difference approximation
to df/dr

	Return type:

	scipy.sparse.dia_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.html#scipy.sparse.dia_matrix]

	
ddx()

	Finite difference matrix for df/dx (centered)

	Returns:

	Matrix which implements the centered finite difference
approximation to df/dx

	Return type:

	scipy.sparse.dia_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.html#scipy.sparse.dia_matrix]

	
del2()

	Finite difference matrix for d2/dx2

	Returns:

	Matrix which implements a finite difference approximation
to (d/dx)(df/dx)

	Return type:

	scipy.sparse.dia_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.html#scipy.sparse.dia_matrix]

	
del2_radial()

	Finite difference matrix for (1/r)(d/dr)(r (df/dr))

	Returns:

	Matrix which implements a finite difference approximation
to (1/r)(d/dr)(r (df/dr))

	Return type:

	scipy.sparse.dia_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.html#scipy.sparse.dia_matrix]

	
radial_curl()

	Finite difference matrix for (rf)’/r = (1/r)(d/dr)(rf)

	Returns:

	Matrix which implements a finite difference approximation
to (rf)’/r = (1/r)(d/dr)(rf)

	Return type:

	scipy.sparse.dia_matrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.html#scipy.sparse.dia_matrix]

	
setup_ddx()

	Select between centered and upwind finite difference

	Returns:

	Returns a reference to either centered_difference() or
upwind_left(), based on the configuration option
input_data["method"]

	Return type:

	function

	
upwind_left(y)

	Left upwind finite difference estimate for dy/dx

	Parameters:

	y (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Vector of values on the grid

	Returns:

	Estimate of the derivative dy/dx constructed using the
left upwind finite difference method

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
class turbopy.computetools.Interpolators(owner: Simulation, input_data: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Bases: ComputeTool

Interpolate a function y(x) given y at grid points in x

	Parameters:

	
	owner (Simulation) – The turbopy.core.Simulation object that contains this
object

	input_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – There are no custom configuration options for this tool

	
interpolate1D(x, y, kind='linear')

	Given two datasets, return an interpolating function

	Parameters:

	
	x (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of input values to be interpolated

	y (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of output values to be interpolated

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – Order of function being used to relate the two datasets,
defaults to “linear”. Passed as a parameter to
scipy.interpolate.interpolate.interp1d.

	Returns:

	f – Function which interpolates y(x) given grid x and
values y on the grid.

	Return type:

	scipy.interpolate.interpolate.interp1d

	
class turbopy.computetools.PoissonSolver1DRadial(owner: Simulation, input_data: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Bases: ComputeTool

Solve 1D radial Poisson’s Equation, using finite difference methods

	Parameters:

	
	owner (Simulation) – The turbopy.core.Simulation object that contains this
object

	input_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – There are no custom configuration options for this tool

	
solve(sources)

	Solves Poisson’s Equation

	Parameters:

	sources (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Vector containing source terms for the Poisson equation

	Returns:

	Vector containing the finite difference solution

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 turbopy	

 	
 	
 turbopy.computetools	

 	
 	
 turbopy.core	

 	
 	
 turbopy.diagnostics	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	_factory_type_name (turbopy.core.ComputeTool attribute)

 	(turbopy.core.Diagnostic attribute)

 	(turbopy.core.PhysicsModule attribute)

 	_input_data (turbopy.core.ComputeTool attribute)

 	(turbopy.core.Diagnostic attribute)

 	(turbopy.core.Grid attribute)

 	(turbopy.core.PhysicsModule attribute)

 	(turbopy.core.SimulationClock attribute)

 	_module_type (turbopy.core.PhysicsModule attribute)

 	
 	_needed_resources (turbopy.core.Diagnostic attribute)

 	(turbopy.core.PhysicsModule attribute)

 	_owner (turbopy.core.ComputeTool attribute)

 	(turbopy.core.Diagnostic attribute)

 	(turbopy.core.PhysicsModule attribute)

 	(turbopy.core.SimulationClock attribute)

 	_registry (turbopy.core.ComputeTool attribute)

 	(turbopy.core.Diagnostic attribute)

 	(turbopy.core.PhysicsModule attribute)

 	_resources_to_share (turbopy.core.PhysicsModule attribute)

A

 	
 	advance() (turbopy.core.SimulationClock method)

 	
 	append() (turbopy.diagnostics.CSVOutputUtility method)

B

 	
 	BC_left_avg() (turbopy.computetools.FiniteDifference method)

 	BC_left_extrap() (turbopy.computetools.FiniteDifference method)

 	BC_left_flat() (turbopy.computetools.FiniteDifference method)

 	BC_left_quad() (turbopy.computetools.FiniteDifference method)

 	BC_right_extrap() (turbopy.computetools.FiniteDifference method)

 	
 	BorisPush (class in turbopy.computetools)

 	buffer (turbopy.diagnostics.CSVOutputUtility attribute)

 	(turbopy.diagnostics.NPYOutputUtility attribute)

 	buffer_index (turbopy.diagnostics.CSVOutputUtility attribute)

 	(turbopy.diagnostics.NPYOutputUtility attribute)

C

 	
 	c2 (turbopy.computetools.BorisPush attribute)

 	cell_centers (turbopy.core.Grid attribute)

 	cell_widths (turbopy.core.Grid attribute)

 	centered_difference() (turbopy.computetools.FiniteDifference method)

 	ClockDiagnostic (class in turbopy.diagnostics)

 	component (turbopy.diagnostics.FieldDiagnostic attribute)

 	
 	compute_tools (turbopy.core.Simulation attribute)

 	ComputeTool (class in turbopy.core)

 	create_interpolator() (turbopy.core.Grid method)

 	csv (turbopy.diagnostics.ClockDiagnostic attribute)

 	(turbopy.diagnostics.PointDiagnostic attribute)

 	CSVOutputUtility (class in turbopy.diagnostics)

 	custom_name (turbopy.core.ComputeTool attribute)

D

 	
 	ddr() (turbopy.computetools.FiniteDifference method)

 	ddx() (turbopy.computetools.FiniteDifference method)

 	del2() (turbopy.computetools.FiniteDifference method)

 	del2_radial() (turbopy.computetools.FiniteDifference method)

 	diagnose (turbopy.diagnostics.FieldDiagnostic attribute)

 	diagnose() (turbopy.core.Diagnostic method)

 	(turbopy.diagnostics.ClockDiagnostic method)

 	(turbopy.diagnostics.CSVOutputUtility method)

 	(turbopy.diagnostics.FieldDiagnostic method)

 	(turbopy.diagnostics.GridDiagnostic method)

 	(turbopy.diagnostics.HistoryDiagnostic method)

 	(turbopy.diagnostics.NPYOutputUtility method)

 	(turbopy.diagnostics.OutputUtility method)

 	(turbopy.diagnostics.PointDiagnostic method)

 	(turbopy.diagnostics.PrintOutputUtility method)

 	
 	Diagnostic (class in turbopy.core)

 	diagnostic_size (turbopy.diagnostics.FieldDiagnostic attribute)

 	diagnostics (turbopy.core.Simulation attribute)

 	do_diagnostic() (turbopy.diagnostics.FieldDiagnostic method)

 	dr (turbopy.core.Grid attribute)

 	dt (turbopy.core.SimulationClock attribute)

 	dump_interval (turbopy.diagnostics.FieldDiagnostic attribute)

 	DynamicFactory (class in turbopy.core)

E

 	
 	end_time (turbopy.core.SimulationClock attribute)

 	
 	exchange_resources() (turbopy.core.PhysicsModule method)

F

 	
 	field (turbopy.diagnostics.FieldDiagnostic attribute)

 	(turbopy.diagnostics.PointDiagnostic attribute)

 	field_name (turbopy.diagnostics.FieldDiagnostic attribute)

 	(turbopy.diagnostics.PointDiagnostic attribute)

 	FieldDiagnostic (class in turbopy.diagnostics)

 	filename (turbopy.diagnostics.ClockDiagnostic attribute)

 	(turbopy.diagnostics.CSVOutputUtility attribute)

 	(turbopy.diagnostics.GridDiagnostic attribute)

 	(turbopy.diagnostics.NPYOutputUtility attribute)

 	finalize() (turbopy.core.Diagnostic method)

 	(turbopy.diagnostics.ClockDiagnostic method)

 	(turbopy.diagnostics.CSVOutputUtility method)

 	(turbopy.diagnostics.FieldDiagnostic method)

 	(turbopy.diagnostics.HistoryDiagnostic method)

 	(turbopy.diagnostics.NPYOutputUtility method)

 	(turbopy.diagnostics.OutputUtility method)

 	(turbopy.diagnostics.PointDiagnostic method)

 	
 	finalize_simulation() (turbopy.core.Simulation method)

 	find_tool_by_name() (turbopy.core.Simulation method)

 	FiniteDifference (class in turbopy.computetools)

 	fundamental_cycle() (turbopy.core.Simulation method)

G

 	
 	generate_field() (turbopy.core.Grid method)

 	generate_linear() (turbopy.core.Grid method)

 	
 	get_value (turbopy.diagnostics.PointDiagnostic attribute)

 	Grid (class in turbopy.core)

 	GridDiagnostic (class in turbopy.diagnostics)

H

 	
 	handler (turbopy.diagnostics.ClockDiagnostic attribute)

 	
 	HistoryDiagnostic (class in turbopy.diagnostics)

I

 	
 	initialize() (turbopy.core.ComputeTool method)

 	(turbopy.core.Diagnostic method)

 	(turbopy.core.PhysicsModule method)

 	(turbopy.diagnostics.ClockDiagnostic method)

 	(turbopy.diagnostics.FieldDiagnostic method)

 	(turbopy.diagnostics.GridDiagnostic method)

 	(turbopy.diagnostics.HistoryDiagnostic method)

 	(turbopy.diagnostics.PointDiagnostic method)

 	input_data (turbopy.diagnostics.ClockDiagnostic attribute)

 	(turbopy.diagnostics.GridDiagnostic attribute)

 	
 	inspect_resource() (turbopy.core.Diagnostic method)

 	(turbopy.core.PhysicsModule method)

 	interpolate1D() (turbopy.computetools.Interpolators method)

 	Interpolators (class in turbopy.computetools)

 	interval (turbopy.diagnostics.ClockDiagnostic attribute)

 	IntervalHandler (class in turbopy.diagnostics)

 	is_running() (turbopy.core.SimulationClock method)

 	is_valid_name() (turbopy.core.DynamicFactory class method)

L

 	
 	location (turbopy.diagnostics.PointDiagnostic attribute)

 	
 	lookup() (turbopy.core.DynamicFactory class method)

M

 	
 	
 module

 	turbopy.computetools

 	turbopy.core

 	turbopy.diagnostics

N

 	
 	name (turbopy.core.ComputeTool attribute)

 	NPYOutputUtility (class in turbopy.diagnostics)

 	
 	num_points (turbopy.core.Grid attribute)

 	num_steps (turbopy.core.SimulationClock attribute)

O

 	
 	output (turbopy.diagnostics.FieldDiagnostic attribute)

 	(turbopy.diagnostics.PointDiagnostic attribute)

 	output_function (turbopy.diagnostics.PointDiagnostic attribute)

 	
 	OutputUtility (class in turbopy.diagnostics)

 	owner (turbopy.diagnostics.ClockDiagnostic attribute)

 	(turbopy.diagnostics.GridDiagnostic attribute)

P

 	
 	parse_grid_data() (turbopy.core.Grid method)

 	perform_action() (turbopy.diagnostics.IntervalHandler method)

 	physics_modules (turbopy.core.Simulation attribute)

 	PhysicsModule (class in turbopy.core)

 	PointDiagnostic (class in turbopy.diagnostics)

 	
 	PoissonSolver1DRadial (class in turbopy.computetools)

 	prepare_simulation() (turbopy.core.Simulation method)

 	print_time (turbopy.core.SimulationClock attribute)

 	PrintOutputUtility (class in turbopy.diagnostics)

 	publish_resource() (turbopy.core.PhysicsModule method)

 	push() (turbopy.computetools.BorisPush method)

R

 	
 	r_inv (turbopy.core.Grid attribute)

 	r_max (turbopy.core.Grid attribute)

 	r_min (turbopy.core.Grid attribute)

 	radial_curl() (turbopy.computetools.FiniteDifference method)

 	read_clock_from_input() (turbopy.core.Simulation method)

 	read_diagnostics_from_input() (turbopy.core.Simulation method)

 	
 	read_grid_from_input() (turbopy.core.Simulation method)

 	read_modules_from_input() (turbopy.core.Simulation method)

 	read_tools_from_input() (turbopy.core.Simulation method)

 	register() (turbopy.core.DynamicFactory class method)

 	reset() (turbopy.core.PhysicsModule method)

 	run() (turbopy.core.Simulation method)

S

 	
 	set_value_from_keys() (turbopy.core.Grid method)

 	setup_ddx() (turbopy.computetools.FiniteDifference method)

 	Simulation (class in turbopy.core)

 	
 	SimulationClock (class in turbopy.core)

 	solve() (turbopy.computetools.PoissonSolver1DRadial method)

 	sort_modules() (turbopy.core.Simulation method)

 	start_time (turbopy.core.SimulationClock attribute)

T

 	
 	this_step (turbopy.core.SimulationClock attribute)

 	time (turbopy.core.SimulationClock attribute)

 	
 turbopy.computetools

 	module

 	
 	
 turbopy.core

 	module

 	
 turbopy.diagnostics

 	module

 	turn_back() (turbopy.core.SimulationClock method)

U

 	
 	update() (turbopy.core.PhysicsModule method)

 	
 	upwind_left() (turbopy.computetools.FiniteDifference method)

W

 	
 	write_data() (turbopy.diagnostics.CSVOutputUtility method)

 	(turbopy.diagnostics.NPYOutputUtility method)

 	(turbopy.diagnostics.OutputUtility method)

 	
 	write_interval (turbopy.diagnostics.FieldDiagnostic attribute)

 nav.xhtml

 Table of Contents

 		
 TurboPy: a framework for computational physics

 		
 Getting Started

 		
 turboPy Conda environment

 		
 turboPy development environment

 		
 Example turboPy app

 		
 Sharing Resources

 		
 Making resources available to other modules

 		
 Looking for shared resources

 		
 TurboPy API

 		
 Core framework classes

 		
 Diagnostic classes

 		
 Compute tools

_static/minus.png

_static/plus.png

_static/file.png

